SPECIFICATION

FOR

	_6600V	FLAT	TYPE .	TRAILING	CABLE
Code	: 6600	V F-H	-3PNCT	3×240 mi	$m^2+1\times50$ mm ²

Quantity	
Your Ref. No.	
Our Ref. No.	1 /
Signed by	Thatenan
	Takanobu Watanabe
	Manager

Engineering Dept. I
Electric Wire & Cable Division

Proterial, Ltd.

Issue and revision record

REV. No.	Issue date	Item	Prepared by	Reviewed by	Approved by
_	May 11, 2023	FIRST ISSUE	K. Yamane	T. Watanabe	T. Watanabe
į					
!					
:					
:			:		

1. Scope

This specification covers 6600V Flat Type Trailing Cable, which is reference to Japanese Electrical Facility Regulation and Manufacturer's Standard.

2. Construction and Materials

2. 1 Power conductor

2. 1. 1 Conductor

Conductor shall be stranded flexible conductor consisting of tinned annealed copper wires.

2.1.2 Inner semi-conductive layer

A suitable semi-conductive tape shall be applied over the conductor. The thickness of the semi-conductive tape shall be included in a part of the insulation thickness.

2. 1. 3 Insulation

Insulation shall consist of ethylene propylene rubber compound. Nominal thickness shall be shown in the attached table.

Ave. thick.: not less than 90% of the nominal thickness

Ave. thick. : not less than 90% of the nominal thickness Min. thick. : not less than 80% of the nominal thickness

2. 1. 4 Outer semi-conductive layer

A suitable semi-conductive tape shall be applied over the insulation.

2.1.5 Shield braid

Shield braid shall consist of tinned annealed copper wires.

2. 1. 6 Core identification

The core identification shall be made by the color of the tape which is applied under the shield braid.

2. 1. 7 Reinforcement

Reinforcement consisting of suitable fabric tape shall be applied over the shield braid.

2. 2 Earth conductor

2. 2. 1 Conductor

Conductor shall be stranded flexible conductor consisting of tinned annealed copper wires.

2. 2. 2 Insulation

Insulation shall consist of ethylene propylene rubber compound. Nominal thickness shall be shown in the attached table.

Ave. thick. : not less than 90% of the nominal thickness Min. thick. : not less than 80% of the nominal thickness

2. 2. 3 Tape

Rubber filled texile tape shall be applied over the insulation.

2. 3 Assembly

The power and earth conductors shall be assembled in parallel.

2.4 Sheath

Sheath shall consist of black polychloroprene compound. Nominal thickness shall be shown in the attached table.

Ave. thick. : not less than 90% of the nominal thickness Min. thick. : not less than 80% of the nominal thickness

2.5 Dimension

The dimension of the cable shall be in accordance with the attached table.

3. Marking

Manufacturer's name and year of manufacture shall be marked by suitable methods.

4. Inspection

Inspection shall be made on the following items prior to shipment.

Properties	Standard to comply with	Requirements	Test interval
Construction and dimensions	JIS C 3005 4.3 To comply with clause 2 and the attached table 1		Farance abiamont
Withstand voltage test	To withstand AC 17000V for		Every shipment
Conductor resistance	JIS C 3005 4.4	Not more than the value in the attached table 2	
Insulation resistance	JIS C 3005 4.7	Not less than the value in the attached table 2	First shipment

5. Guide to use

This cable is designed for crane installation of reel system(traveling) as shown below.

R : Permissible minimum bending radius

(Code: $6600 \text{V F-H-3PNCT } 3 \times 240 \text{mm}^2 + 1 \times 50 \text{mm}^2$)

	Item	Unit	Specified value		
Type of core		-	Power	Earth	
No. of cores		- 3 1		1	
	Nominal cross-section area	mm ²	240	50	
Conductor	Construction	No. /mm	37/33/0. 5	19/16/0. 45	
	Approx. diameter	nm	23. 2	10. 4	
Nominal thickness of insulation		mm	5. 5 *	2. 1	
Approx. thickness of shield braid		mm	0. 65	<u> </u>	
Nominal thic	ckness of sheath	f sheath mm 8.1		. 1	
Approx. dimension of completed cable		mm	54×142		
Maximum dime	aximum dimension of completed cable mm		56. 7×149. 1		
Approx. weight of completed cable		kg/km	15300		

^{* :} This value includes thickness of inner semi-conductive tape.

Table 2 : Characteristic

Item	Unit_	Specified value		
Type of core	_	Power	Earth	
Nominal cross-section area	_	240	50	
Conductor resistance at 20℃	Ω/km	0. 0817	0. 411	
Withstand voltage test	√√min.	17000/10	3000/1	
Insulation resistance at 20℃	MΩ·km	400	300	
Permissible minimum bending radius	mm	870		
Permissible maximum pulling tension **	kN	28. 0		
Permissible maximum compression force ***	kN/m	4. 9		

^{**:} In any case, pulling tension and compression force must not exceed this value.

For safety, regular pulling tension should be 1/3 of the permissible maximum value.

It is necessary to determine the pulling tension considering the compression force.

^{*** :} Compression force = Pulling tension / Bending radius

Fig. 1 Cable cross section

 $\bigcirc : 240 \text{mm}^2$ $\bigcirc : 50 \text{mm}^2$

Fig. 2 Core identification